Uniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groups

Show simple item record

dc.contributor.author Giri, Deb Kumar
dc.date.accessioned 2018-06-01T05:28:32Z
dc.date.available 2018-06-01T05:28:32Z
dc.date.issued 2018
dc.identifier.other ROLL NO.136123005
dc.identifier.uri http://gyan.iitg.ernet.in/handle/123456789/978
dc.description.abstract We explored the Heisenberg uniqueness pairs corresponding to the spiral, hyperbola, circle, cross, exponential curves, and surfaces. Then, we prove a characterization of the Heisenberg uniqueness pairs corresponding to four parallel lines. We observe that the size of the determining sets for X depends on the number of lines and their irregular distribution that further relates to a phenomenon of interlacing of the zero sets of certain trigonometric polynomials. en_US
dc.description.sponsorship Supervisor: Rajesh K. Srivastava en_US
dc.language.iso en en_US
dc.relation.ispartofseries TH-1723;
dc.subject MATHEMATICS en_US
dc.title Uniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groups en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account