dc.contributor.author |
Giri, Deb Kumar |
|
dc.date.accessioned |
2018-06-01T05:28:32Z |
|
dc.date.available |
2018-06-01T05:28:32Z |
|
dc.date.issued |
2018 |
|
dc.identifier.other |
ROLL NO.136123005 |
|
dc.identifier.uri |
http://gyan.iitg.ernet.in/handle/123456789/978 |
|
dc.description.abstract |
We explored the Heisenberg uniqueness pairs corresponding to the spiral, hyperbola, circle, cross, exponential curves, and surfaces. Then, we prove a characterization of the Heisenberg uniqueness pairs corresponding to four parallel lines. We observe that the size of the determining sets for X depends on the number of lines and their irregular distribution that further relates to a phenomenon of interlacing of the zero sets of certain trigonometric polynomials. |
en_US |
dc.description.sponsorship |
Supervisor: Rajesh K. Srivastava |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.ispartofseries |
TH-1723; |
|
dc.subject |
MATHEMATICS |
en_US |
dc.title |
Uniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groups |
en_US |
dc.type |
Thesis |
en_US |